

Managing Open Source Legality Concerns –
A Sustainability Catalyst

Alexander Lokhman, Salum Abdul-Rahman, Antti Luoto, Imed Hammouda
 Department of Software Systems

Tampere University of Technology
Tampere, Finland

firstname.lastname@tut.fi

Abstract. As more and more software companies are integrating different
Free/Libre and open source software (FLOSS) components in their
products, it became more probable that a single software solution uses
numerous licenses. Mixing together different open source and proprietary
licenses may lead to legality complications as different licenses introduce
different privileges and requirements on the use of the composed code. In
this paper, we address the multi-facets of the legality concerns of open
source. We further propose an open tool architecture to address such
concerns.

1 Introduction

Over the last decades, Free/Libre and Open Source Software (FLOSS) has
emerged as one of the most important phenomena in software engineering. In
this trend, more and more companies are putting FLOSS at the center of their
business strategies. Although there are many benefits to going open source,
companies need to be aware of the risks associated with FLOSS. One of such
risks is the legal obligations that both consumers and producers of FLOSS need
to fulfill. Unfortunately, for many companies, software developers are still
unaware of these issues. This may cause trouble to the corresponding companies,
especially in the absence of legal departments and external legal consultants.

In this position paper, we address the various facets of open source legality
compliance, arguing that the legal risks of open source have a critical influence
on the sustainability of the open source movement as a whole. We further argue
that handling the legality risks through shared knowledge bases and automated
tools may boost the adoption of open source. Towards the end of the paper we
briefly present an open tool architecture for open source legality compliance.

2 Legality Tension of FLOSS intensive systems

When addressing the legality compliance issue of FLOSS intensive systems,
there are a number of factors that must be taken into account. These factors not
only stem from the nature and terms of the licenses themselves, but also are
related to the way the subject software is implemented, packaged, and deployed.

 Alexander Lokhman, Salum Abdul-Rahman, Antti Luoto, Imed Hammouda

There are plenty of licenses and license models. A straight forward observation
when working with open source licenses is that there are many of them. The
Open Source Initiative [OSI] lists about 70 licenses. Popular licenses include the
GNU General Public License (GPL), the Lesser GNU General Public License
(LGPL), the Apache license, the Massachusetts Institute of Technology license
(MIT), and the Berkeley Software Distribution license (BSD). The terms of
different licenses vary considerably. To give an example, some licenses such as
MIT are classified as permissive, granting very broad rights to licensees and
allowing almost unlimited use of the licensed code. Other licenses such as GPL
are classified as strong copyleft, requiring that works based on the licensed code
be published and relicensed to others on the same terms of the initial license. In
the middle are weak copyleft licenses such as LGPL, which is a compromise
between permissive and strong copyleft. The LGPL grants flexibility to users
when linking to licensed software libraries. However, any modifications to the
original library should be contributed back on the same terms of the license.
Moreover, some licenses have several versions, and there are subtle changes
between different versions. A good example is the case of GPL v2 and GPL v3.
In addition, the list is by no means complete, and new licenses can be introduced
if so desired. For example, a new license can add some minor differences to an
earlier one, thus generating a discrepancy between the licenses, or a completely
new license can be introduced.

Licenses can be conflicting [Ham10]. To give an example of possible legal
incompatibilities between software components, Table 1 presents a number of
open source licenses and their compatibility properties (across open source
components themselves) categorized into three cases: mixing and linking is
permissible, only dynamic linking is permissible, and completely incompatible.

Table 1. Example Open Source Licenses and their Compatibility
 PHP Apache IPL SSPL Artistic
GPL 3 3 3 1 3
LGPL 2 2 2 1 2
BSD 1 1 1 1 1

1- Mixing and linking permissible
2- Only dynamic linking is permissible
3- Completely incompatible

As an example, a software component under the terms of GPL cannot be

directly linked with another under the terms of the Apache license. In this case,
the main reason is that GPL’ed software cannot be mixed with software that is
licensed under the terms of a license that imposes stronger or additional terms, in
this case the Apache license. The Apache 2.0 license allows users to modify the
source code without sharing modifications, but they must sign a compatibility
pledge promising not to break interoperability.

Is it derived or combined work? When integrating third party open source
components, possibly together with own work, the restrictions and obligations
which the used licenses impose may depend on whether the work is considered

Managing Open Source Legality Concerns – A Sustainability Catalyst

as derived (derivative) or combined (collective) [Ger09]. A simple example of
derived work is a modified version of the original software. However, the
distinction between derived and combined works becomes trickier when
producing new work by combining or linking multiple software components,
possibly distributed under the terms of different licenses. Take the example of a
software system S which is the result of linking together an open source
component C1 and an own developed component C2. A common interpretation
is that system S is considered to be derived work if C1 and C2 link statically
(linked during compile or build time) and that S is considered to be combined
work if C1 and C2 link dynamically (the two libraries are loaded into a client
program at runtime). In a typical case, however, only a judge in a court of law
can make the final decision. As a matter of fact, the court decision might depend
on the specific legal framework of the jurisdiction in which the case arises.

There are thousands of open source components with different risk levels
depending on their usage scenario. The number of open source components has
grown at an exponential rate during the last decade. This has given software
developers a jump on creating software based on existing code. However, many
companies are reluctant to use open source software due to the legal risks
associated with the use of those components. There have been attempts to
classify open source components according to their risk level [Wil10]. Table 2
gives an example categorization. Four usage scenarios are identified: using the
component as a redistributable product, as part of service offering, as a
development tool, and for internal use. Three levels of risks have been proposed.

Table 2. Example Software Components and their Risk Level
Component License Redistribution Service

offering
Development
tool

Internal
use

Agent++ Agent++
license

3 3 2 1

SwingX LGPL 3 3 3 3
Libxml2 MIT 1 1 1 1
Cglib Apache 2 1 1 1

(1) Valid (2) Possible risk (3) Clear risk

According to the authors of [Wil10], valid means that the package can be
used as instructed and that no risk has been identified. Possible risk means an
interpretation question has been found. This type of issues can be solved by
either 1) removing/replacing the problematic files or 2) acquiring additional
permissions from the respective right holder or 3) not using the package at all or
4) based on the particular company’s risk preferences in such project, a company
could accept the risk. Legally, an interpretation question means that an eventual
realizing risk would be civil law risk, e.g. monetary (not criminal). Clear risk
means that a risk that cannot be interpreted in a way that would not include the
risk has been found. This type of issues can be solved only by 1)
removing/replacing the problematic files or 2) acquiring additional permissions
from the respective right holder or 3) not using the package at all. A company

 Alexander Lokhman, Salum Abdul-Rahman, Antti Luoto, Imed Hammouda

normally cannot accept this type or risk, since it means the possibility of not
only civil law risks, but criminal risks.

As an example, component Agent++ can be used internally with no risk, has a
possible risk when used as a development tool, but exhibits a clear risk when
used as part of service offering or a redistributable product.

Open Source legality interpretations are subject to the way software is
implemented, packaged, and deployed [Ham10, Mal10]. The legality
requirements imposed by FLOSS licenses, such as the requirement to publish
source code (i.e. the copyleft rule of GPL), may depend for instance on the
interaction type of the components (data-driven versus control-driven
communication). In the case of mere data exchange between components, there
is no copyleft obligation as the two components are considered as separate
programs. Also, the copyleft obligation of GPL does not hold if the FLOSS
component (or a modified version of it) is deployed as a hosted service.
However, if the hosted code is licensed under the terms of AGPL (Affero
General Public License), the copyleft requirement does hold, but only in the case
of user interaction with the hosted service (in contrast to service to service
interaction). In addition, the copyleft requirement of GPL may not hold in case
of interactions through standardized interfaces such as the use of operating
system public API, in contrast to system hacks which make the two
communication components strongly coupled. Finally, compatibility concerns
among different licenses may be circumvented if the packaging of components is
done by the user instead of building the entire system at the vendor site.

3 Towards an Open Architecture for FLOSS Compliance

The ultimate goal of this work is to design and implement a new kind of tool for
addressing the various legality compliance concerns identified in the previous
section.

Figure 1. An Open Architecture for Open Source Compliance

Managing Open Source Legality Concerns – A Sustainability Catalyst

Figure 1 proposes an example overall architecture for such a tool. Here we
assume that the tool is capable of managing the legality concerns at the
architectural level (i.e., application design is expressed as an UML component
diagram for example). Table 3, in turn, explains each of the architectural
components and lists example existing works that could be used as
implementation guides.

Table 3. Architectural Components
Component Description Resource

Core

Handles interactions between the application model,
licensing information and the user.

[Wil10]

License Profile

A UML extension to include license information. [SPDX], [Hoe07],
[OSI]

License Model

Describes in computable format the clauses,
restrictions, rights and their interdependencies of a
license.

[Als09], [Tuu09],
[Hoe07], [Gom08]

Package
Database

A repository of containing information on which
license and copyright information is associated with
which package.

[SF]

Risk View

Assess legal risks related to use of component for
variable purposes re-licensing, sale, internal use etc.

[Als09], [Hoe07],
[Gom08]

Conflict
Detection

Analysis whether license terms of different licenses
conflict when linked into the same software.

[Ham10], [Als09],
[Tuu09], [FOS10],
[OSLC], [Ninka]

Problem
Resolution

Suggests operations that can be performed to remove
license conflicts from model.

[Ger09], [Ham10],
[Mal10]

Learning Agent

Records user actions so that they can be later used to
improve program performance.

[Ham10]

Reporting

The analysis results from the different components
can be output in different formats.

[FOS10], [Tuu09],
[OSLC]

Documentation

Linking to internal and external documentation on
open source licensing concerns.

[IFOSS]

A part from Core, each component is associated with an extension point. The
architecture is made extensible so that the tool is able to work with different
licenses. The License Profile component allows for attaching different licensing
concepts to the architectural model. Different implementations of License Model
give different interpretations of clauses based on local law. Different open
source components can be registered to the tool via the Package Database
component. The Risk View extension point allows the plug-in of different risk
analysis methods. The tool also integrates different techniques for detecting
conflicts among licensed components (Conflict Detection) and proposes
remedial actions (Problem Resolution). These actions can be recorded for future
exploitation (Learning Agent). Finally, the tool is capable to report the analysis
results in different pluggable formats (Reporting) and links to relevant
documentation resources (Documentation). We argue that the described

 Alexander Lokhman, Salum Abdul-Rahman, Antti Luoto, Imed Hammouda

architecture allows the building of an open knowledge base related to open
source licensing.

4 Conclusions

There has been a growing interest in studying the compliance of software
systems with respect to the legality restrictions and obligations of open source
licenses. This came in response to the increasing concerns about the legal risks
of using FLOSS components. We argue that if such issues are not addressed by
both legal experts and software developers, the whole open source ecosystem
may face sustainability challenges. In this paper we have presented an overview
of the main dimensions involved in open source compliance. Based on the
analysis, we have outlined an open architecture for managing open source
legality concerns at the architectural level. As future work, we plan to exploit the
ideas presented in this paper to develop concrete tool infrastructure.

References

[Als09] Alspaugh, T. A., Asuncion, H. U. and Scacchi, W. Analyzing Software Licenses in Open
Architecture Software Systems. In proc. of FLOSS 2009, pp 54-57.

[FOS10] FOSSology. http://fossology.org/. Last accessed Sep. 2011.
[Gam05] Gamma, E.,Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison_Wesley, 1995.
[Ger09] German, D. M.; Hassan, A. E. License integration patterns: Addressing license

mismatches in component-based development. In proc. of ICSE 2009, pp 188-198. May
2009.

[Ham10] Hammouda, I., Mikkonen, T., Oksanen, V. and Jaaksi, A. Open Source Legality Patterns:
Architectural Design Decisions Motivated by Legal Concerns. In proc. of AMT 2010.
Tampere, Finland. October 2010. ACM Press.

[Hoe07] Hoekstra, R., Breuker, J., Di Bello, M. and Boer, A. The LKIF Core Ontology of Basic
Legal Concepts . In proc. of LOAIT 2007, pp 43-63.

[IFOSS] International Free and Open Source Software Law Review. http://www.ifosslr.org. Last
accessed Sep. 2011.

[OSI] Open Source Initiative. http://www.opensource.org. Last accessed Sept. 2011.
[OSLC] OSLC, Open Source License Checker. http://sourceforge.net/projects/oslc. Last accessed

Sept. 2011.
[Mal10] Malcolm, B. Software Interactions and the GNU General Public License. IFOSS L. Rev,

2(2), pp 165 - 180. 2010.
[Ninka] Ninka, a license identification tool for Source Code. http://ninka.turingmachine.org/. Last

accessed Sep. 2011.
[SF] Sourceforge.net. http://sourceforge.net/. Last accessed Sep. 2011.
[SPDX] Software Package Data Exchange (SPDX). http://spdx.org/. Last accessed Sep. 2011.
[Tuu09] Tuunanen, T., Koskinen, J. and Kärkkäinen, T. Automated software license analysis.

Automated Software Engineering 16 (3-4), 455-490, Dec. 2009.
[Wil10] von Willebrand, M. and Partanen, M. P. Package Review as a Part of Free and Open

Source Software Compliance. IFOSS L. Rev, 2(2), pp 39 – 60. 2010.
[Gom08] Gomez, F. P. and Quiñones, K. S. Legal Issues Concerning Composite Software. In proc.

of ICCBSS 2008, pp 204-214, 2008.

